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Abstract 

It is shown that copies of seven elementary cells suffice 
to fill any region of Euclidean three-dimensional space. 
The seven elementary cells have four basic convex 
polyhedral shapes and three of them appear in two 
different sizes. The space filling is non-periodic, has a 
central point, and preserves the full icosahedral group. 

1. Introduction 

An ideal crystal exhibits a characteristic discrete 
repetition pattern of elementary cells which fill the 
three-dimensional Euclidean space ~-3. This pattern is 
best described by giving the space group of symmetry 
operations which generate the pattern. According to the 
standard definition, any space group is a discrete 
subgroup of the Euclidean group which contains a 
non-trivial discrete translation subgroup. This trans- 
lation group generates in a crystal a periodic structure. 
From this periodic structure one can derive the 
well-known proposition that the only discrete rotational 
symmetries of a crystal are given by two-, three-, four-, 
and sixfold axes. 

Non-periodic but repetitive patterns have been 
considered before for the Euclidean space E 2. Goldberg 
(1955) gave examples of tessellations with one elemen- 
tary cell and a unique center and called them central 
tessellations. Penrose (1974) constructed from two 
elementary cells various tessellations of •2. In par- 
ticular, he found tessellations which have the symmetry 
group ~sv and a central point and therefore are 
non-periodic. 

The repetitive space filling constructed in this paper 
for ~-3 exhibits the icosahedral symmetry group J~h. 
Because of the fivefold rotation axes contained in 3" h, 
the pattern is central and non-periodic. 

A fundamental role in what follows is played by the 
number 

(p = ½(1 + V/5). 

This number is the basic quantity in the golden section 

a/b = b/(a + b) 
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with the solution 

b/a = ~. 

It governs the proportions of the pentagon, Fig. 1. For 
the pentagon p(L) of edge length L, the distance 
between two vertices separated by a third one is tpL. 
For the occurrence of the number 9 in the dodeca- 
hedron and icosahedron see § 2. 

The paper is organized as follows. In § 2, the 
dodecahedron and the icosahedron are used to cover 
by star extension central regions of E 3. In § 3, 
elementary cells of four shapes are defined and 
described. In § 4, cells with the same proportions, but 
with their linear dimensions increased by powers of 9, 
are composed from elementary ones. On the basis of 
these results, the possibility of space filling is demon- 
strated in § 5. Supplementary results are given in § 6. 

2. Star extension of  the dodecahedron and the 
icosahedron 

Denote a regular pentagon of edge length L in the plane 
E 2 by p(L). Extending the edge lines to their five 
intersections one gets the star pentagon or pentagram. 
These five intersections mark the vertices of a pentagon 
p(tp2L) with the same center but vertex directions 
through the midpoints of the edges of p(L). Call this 
construction of p(tpEL) from p(L) a star extension. 
Note that the star extension proceeds in steps of two 
generations of pentagons. Generations are introduced 
in definition 4.4. 

Fig. 1. Star extension of the pentagon. When the edges of the small 
pentagon are extended up to their intersections, they yield the 
pentagram. These intersections mark the five vertices of a larger 
pentagon whose edge length has increased by a factor ~0 z. The 
two types of triangles inside p(q72 L) have the three edge lengths 
L, qTL, qTL and ~o ~ L, ~0L, ~oL, respectively. 
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A similar construction applies in three-space ~-3. 
Start with a regular dodecahedron of edge length L, 
which will be denoted as d(L). The extended edges of 
d(L) intersect at twelve points which mark the vertices 
of the star dodecahedron (Fig. 2) and, at the same time, 
the vertices of an icosahedron. This star extension or 
stellation of the dodecahedron was first described by 
Kepler (1619). Restricting the attention to the extended 
edges of a single face pentagon p(L), one easily 
concludes that the edges of this icosahedron have the 
length tp2L. Denote this icosahedron as i(~02L). 
Extending now the edges of this icosahedron to their 
intersections, one obtains the star icosahedron i(tp2L) 
and, at the same time, marks the vertices of a new 
dodecahedron. This dodecahedron is found to have the 
same center and orientation of faces as d(L) but the 
edge length ~03L, it is denoted as d(~oaL). Call the 
processes just described the star extensions of d(L) into 
i(tp2L), of i(tp2L) into d(tp 3 L) and of d(L) into d(tp a L). 
The star extension of d goes in steps of three 
generations. Clearly the star extension may be repeated 
n times to cover a central region of E 3 of arbitrary size, 
Fig. 3. This process of covering E a is of course not 
repetitive since it involves a scaling of the initial cells in 
powers of tp. Repetitive space filling requires that there 
be a finite set of cells which may be composed without 
holes and without intersections to cover arbitrary parts 
of Euclidean ~73. 

center and through one vertex and the opposite 
midpoint of an edge for any face pentagon. The full 
symmetry group of the dodecahedron is denoted as ~'h. 
Its elements are described with definitions 4.1-4.3. 

3. Elementary cells 

In the planar star extension of the pentagon p(L), there 
appear two triangles whose three edges have the lengths 
L, tpL, ~oL and tp2L, tpL, ~oL respectively. Pentagons 
and triangles of this type may be used as faces of cells 
in ~-a. Besides the dodecahedron, three such cells will be 
introduced, denoted by Greek names and abbreviated 
by their first letters, Fig. 4. The smallest edge length will 
in most cases be used to define the size of a cell. 

3.1. Definition: the dodecahedron d(L) 
Twelve pentagonal faces p(L) form the dodeca- 

hedron. The symmetry group of d(L) is the full 
icosahedral group with twofold, threefold and fivefold 
rotation axes. There are five mirror planes through the 

Fig. 2. Star extension of the dodecahedron. The star dodecahedron 
is obtained by extending the edge lines up to their intersections. 
The 12 intersections mark the vertices of the icosahedron. 

Fig. 3. Star extension of the dodecahedron and icosahedron. By 
extending the edge lines and marking their intersections, one 
obtains in E 3 the star extensions from the dodecahedron d(L) to 
the icosahedron i(tp 2 L), from i(~o 2 L) to d(tp 3 L) and from d(tp 3 L) 
to i(fo 5 L), shown in part only. The vertices of these polyhedra are 
marked by filled circles; extensions of edges are shown except for 
d(L). 

d 

Fig. 4. Elementary cells. The four shapes of the elementary cells, 
dodecahedron d, skene s, aetos a and tristomos t, in axonometric 
projection. The sizes correspond to d(L), s(~0 2 L), a(tp 2 L), t(tp 2 L). 
Visible and invisible edges are drawn as solid and broken lines 
respectively. 
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3.2. Definition: the skene (tent) s(L) 

Five triangles of edge length L, ~oL, ~oL form a 
regular five-sided pyramid s(L) on a pentagon base 
p(L). The symmetry group of s(L) is C~sv. It contains a 
fivefold rotation axis C5 and five mirror planes 
containing this axis and a pentagon vertex. The name 
of the cell is derived from its outer shape. 

3.3. Definition: the aetos (eagle) a(L) 

Two triangles of edge length L, ~oL, ~oL joined at 
their bases, and two triangles of edge length ~02L, ~oL, 
~oL joined at their bases are combined into a tetra- 
hedron a(L). The symmetry group of a(L) is CC2v. The 
twofold axis C2 passes through the midpoints of the 
smallest and largest edge. The two mirror planes 
contain this axis and one of these two edges respec- 
tively. The name is suggested by the shape of a(L) 
when the largest edge points upwards. 

3.4. Definition: the tristomos (three-edged) t(L) 

Three triangles of edge length L, ~oL, ~0L and three 
triangles of edge length L, tp-IL, ~0-1L form two 
regular three-sided pyramids on a triangular base of 
edge length L, L, L. These two pyramids are connected 
at their bases into the convex cell t(L). In the case of 
t(L) we prefer to use the base edge, not the shortest 
edge, for reference. The symmetry group of t(L) is 
clearly c~3v. 

All four cells defined so far are convex. They arise in 
a natural way in the composition which leads from 
d(L) to its star extension d(~o3L), as will be shown in 
the next section. Some of their metrical properties are 
summarized in Table 2. 

4. Composite cells and their generations 

For the process of repetitive space filling, it will be 
necessary to build composite cells out of elementary 
ones. First, it proves convenient to introduce a notation 
for the faces, vertices and edges of the dodecahedron 
and icosahedron as well as for their symmetry 
operations. 

4.1. Definition: faces of  the dodecahedron, vertices of  
the icosahedron 

Start with one pentagonal face of d(L) denoted by 1. 
Label the five faces which have an edge common with 1 
counter-clockwise as 2, 3, 4, 5, 6. For opposite faces of 
d(L) choose numbers which add up to 13. The same set 
of 12 numbers 1, 2, ..., 12 applies to the vertices of the 
icosahedron and yields the directions of the six fivefold 
rotation axes C5 through the center. 

4.2. Definition: edges o f  the dodecahedron and icosa- 
hedron 

For the dodecahedron, denote the common edge of 
two neighboring faces i, j by i lj. The corresponding 
edge of the icosahedron between the vertices i, j is 
denoted as i-j. The 15 twofold rotation axes C2 of the 
icosahedral group pass through the center and the 
midpoints of these edges. The mirror planes contain 
one axis C2 and one dodecahedral or one icosahedral 
edge. 

4.3. Definition: vertices o f  the dodecahedron, faces o f  
the icosahedron 

For the dodecahedron, denote the vertex of three 
neighboring faces i, j, k by i . j . k .  The same triple 
denotes a face of the icosahedron and one of the ten 
threefold rotation axes C 3. 

The next step in the analysis will be a systematic 
study of composite cells according to generations as 
given in definition 4.4. 

4.4. Definition: sequence of  generations o f  a cell 

A sequence of n generations of a cell y is a set of cells 
with the same angles and length proportions between 
all pairs of edges but with the reference edge length 
(oiL, ~oi+lL, . . . ,  qgi+nL. The members of generations 
are denoted as y(~o t L), y(~o i+ ~ L) . . . .  , y(~o i+" L). 

The following selection of elementary cells will be 
used in the remaining sections of this paper. 

4.5. Definition: the set o f  seven cells d(L), s(L), a(L), 
t(tp 2 L), d(tpL), s(~oL), a(tpL) will be called elementary in 
what follows 

If necessary, these seven cells will be denoted as 
yl(~oqiL) according to Table 1. 

Note that the set of seven elementary cells involves 
four shapes d, s, a, t but two generations of d, s and a. 
Turn now to the building of composite cells. The 
objective will be to buld higher generations of the cells 
d, s, a and t from elementary ones. It will be seen that 
the step from one generation to the next depends on the 
number of the generation. In line with the star exten- 
sion, the composition will be shown to have a period of 
three, not of one generation(s). First of all a composite 
cell laros is introduced as a useful tool. 

4.6. The generations o f  the laros (sea-gull) 

1. Generation l(q92L), Figs. 5, 6: cover the faces 1, 
5, 7, 9 of d(L), enumerated according to definition 4.1, 

Table 1. The seven elementary cells written in the 
form Yi(~' L) 

i 1 2 3 4 5 6 7 
y~ d s a t d s a 
qi 0 0 0 2 1 1 1 
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with four s(L). Insert one a(L) with its smallest edge 
coincident with the dodecahedral edge 115 to complete 
l(¢2L). Its smallest edge has length tp2L, its largest tp3L. 
The edge of length ~03L perpendicular and opposite to 
the smallest one will be called the counter-edge of l. The 
symmetry group of/((p2 L) is cC2v. The name is derived 
from the shape of the cell when its edge 115 points 
upwards. 

2. Generation/(¢aL): the composition of generation 
1 is repeated with the second elementary generation 
d(~oL), s((oL), and a(~oL). 

3. Generation I(¢4L): not required. 
4. Generation I(~oSL): the composition of generation 

1 is repeated with d(¢aL), s(tpaL), a(~0aL). These 
composite cells are constructed below. 

4.7. The generations of the dodecahedron 

1. Generation d(L): elementary. 
2. Generation d(~0L): elementary. 
3. Generation d(tpEL): its construction is not 

needed, but a similar composite cell is constructed in 
relation to s(~o 4 L). 

d(~oL) will be needed to compose d(~o 3 L). Cover the 12 
faces of d(L) with 12 s(L) to obtain the star 
dodecahedron based on d(L). Attach to each of the 30 
dodecahedral edges one a(L) with a coincident edge of 
length L and its largest edge connecting the outer 
vertices of two s(L). The latter edges coincide with the 
edges of the icosahedron i(¢2L) obtained by star 
extension. The icosahedron is complete except for a 
three-sided pyramidal hole on each of its faces; it is 
denoted as  i (~02L). The hole is a regular three-sided 
pyramid whose sides are triangles of edge length ~02 L, 
~0L, ~0L. Now insert 20 tristomoi t(tp 2 L )  into these holes 
to obtain the star icosahedron based o n  i(~p2L). Two 
tristomoi with a common edge of length cp2L have an 
outer vertex distance ~3 L; all these vertices together 
mark the 20 vertices of d(~03L). The composite cell 
I(Cp 2 L) constructed above is now fitted in between pairs 
of tristomoi with a common edge. The common edge 
belongs t o  i((p 2 L )  and has the symbol j-k.  The smallest 
edge of I(~p2L) of length ¢2L coincides with j-k; its 
counter-edge of length tp a L coincides with edge j lk of 

4. Generation d(tp 3 L), Fig. 7" this cell appears in the 
star extension from d(L). All elementary cells except 

" 

o ° 
• ,, . 

~ o  .° ' ' "  

Fig. 5. Composite cell laros. The composite cell laros l(¢2L) is 
obtained by covering d(L) with four s(L) and one a(L) as 
indicated. 

Fig. 6. Composite cell laros. 

v 

Fig. 7. Composite cell d(¢3L). The steps in building one face of 
d(~ 3 L) from one face of d(L) are indicated, starting from the 
icosahedron i ( tp  2 L) described in the text and shown to the left in 
the lower part of the figure. To build the face of d(tp a L), the five 
t(¢2L) must be moved along the C 3 axes into the tetrahedral 
holes. One l(~02L) must be shifted back to form a ring of five 
l(tp2L) which is moved along the C s axis into the intervals 
between the t(~o2L). The hole in the face of d(tp3L) has a 
pentagram base, it is filled by a ring of five a(¢L) and one s(tpL), 
moved along the Cs axis. Vertices of i_(~o 2 L) and of d(~ a L) are 
marked by filled circles. 
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d(tpaL). The five laroi /(tp2L) whose counter-edges 
form a pentagon p(~o 3 L) yield with one face a part of 
the pentagonal face of d(tp3L) but leave a pyramidal 
hole. The base of this hole is the star pentagon based on 
p(~oL); its innermost vertex is a vertex of the embedded 
i(tp2L). If five aetoi a(q~L) are attached to the five 
triangular faces of one s(~oL), this construction fills the 
hole up to the face of d(tp 3 L). The same procedure is 
used on all faces to complete d(~o 3 L). The composition 
just described and the relative positions of the six 
elementary cells will be referred to as standard 
composition and standard positions respectively. 

5. Generation d(tp4L): the same composition as for 
generation 4 applies. The required cells d(~oL), s(~oL), 
and a(tpL) are elementary; the composite cells t(tp3L), 
s(~o2L) and al(tp2L) are independently constructed 
below. 

The elementary cells used in the composition of 
d(~o3L) have intrinsic symmetry operations like 
rotation axes and mirror planes. In the construction 
all rotation axes and mirror planes of d(~o 3 L) match 
corresponding symmetry operations of the elementary 
cells in their standard position within d(~oaL). Some 
elementary cells like d(tpL) and a(tpL) have higher 
symmetry than the ones which are required at their 
position. 

4.8. The generations of the skene 
1. Generation s(L): elementary. 
2. Generation s(tpL): elementary. 
3. Generations s(~02L), Fig. 8: cover the faces 1, 7, 

8, 9, 10, 11 of d(L) with six s(L). Insert on the 
dodecahedral edges 718, 819, 9110, 10111, 1117 five 
a(L) in standard positions. This cell is a composite 
subcell of d(~03 L). 

4. Generation s(~03L): repeat the compositio_n of 
s(~02 L) with the next generation d(~oL), s(tpL) and a(tpL) 
of elementary cells. 

5. Generation S((p4t): since d(tp2L) is not available 
as an elementary or composite cell, a new procedure is 
required. This procedure is based in part on the 
standard composition from d(L) to d(tp3L) between 
two faces with the same number. The pentagonal face 
p(L) of d(L) is covered by s(L). Five a(L) are attached 
to the triangular sides of s(L). Five t(tp2L) are inserted 
into their standard position and are joined in pairs by 
five I(tp2L). One s(tpL) and five a(~oL) complete the 
composition up to the pentagonal face p(tpaL) of 
d(tpaL); compare with Fig. 7. This face is now covered 
by the composite s(~o3L) as required in the con- 
struction of the star dodecahedron based on d(~o a L). 
The outer shape (not the internal composition) of the 
composite cell constructed so far is that of d(~o 2 L) but 
with face 1 covered by s(tp2L). There are five 
pentagonal faces p(tp2L) surrounding the pentagonal 
face p(tp2L) in the plane of the dodecahedral p(L). 

Cover these five faces with five s(~02L) and insert five 
a(tp2L) at their common edges to obtain s(~04L). Use 
the second alternative a2(~02L) for the composition of 
a(q)2L) to preserve the correct mirror planes of the 
symmetry group C~v. The composition of S(~4L)then 
exhibits the symmetry group ~sv. 

4.9. The generations of the aetos 
1. Generation a(L): elementary. 
2. Generation a(~0L): elementary. This cell could be 

composed out of s(L) and a(L). Enumerate the five 
triangular faces of s(L) as 2, 3, 4, 5, 6. Attach two a(L) 
to faces 2 and 4 in standard positions. With respect to 
its composition, this construction, shown in Fig. 9, has 
lower symmetry and therefore is not suited for the 
following construction. 

3. Generation a(~02L): start with t(~L) and attach 
two a(L) to two triangular faces of the smaller type. 
Attach s(L) with faces 2, 3 to the two a(L) in standard 
positions and attach another a(L) to the face 5 of s(L) 
to obtain a(~02L). With respect to its constituents, this 
composite cell al(tp2L) maintains only the mirror plane 
through the center and the largest edge. Alternatively, 
a(tp2L) may be composed from one s(tpL) and two 
a(~oL) in the way outlined under a(~oL). This version 
a2(~02 L) preserves the mirror plane through the center 
and the smallest edge and is needed in composing 
s(¢4L). 

4. Generation a(¢3L), Figs. 9, 10: start with l(¢2L) 
described above. Cover faces 2, 3 of the embedded 
d(L) with two s(L), insert five a(L) in standard 
positions at the edges 112, 213, 311,219, 317. Similarly, 
cover faces 10, 11 with two s(L) and insert five a(L) at 
the edges 5110, 10111, 1115, 1019, 1117. Insert two 
t(~02L) into their standard positions at the vertices 
1.2.3 and 5.10.11 to complete a(~3L) with the full 
symmetry group ~2v- 

5. Generation a(~04L): the composition of 
generation 4 is repeated to compose a(~04L) out of the 
second generation of elementary cells and the com- 
posite cells l(tp 3 L) and t(~03 L). 

Fig. 8. Composite cell s(tp2L). The composite skene s(tp2Z) is 
obtained from d(L) by covering six faces with s(L) and inserting 
five a(L). Edges of elementary cells are drawn as solid lines, 
vertices of s(~ L) are marked by filled circles. 
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4.10. The generations of the tristomos 

1. Generation t(tp 2 L): elementary. 
2. Generation t(~3L), Fig. 11: starting from d(L), 

cover faces 1, 2, 3, 5, 7, 9 with six s(L). Adjoin six a(L) 
in standard positions at the edges 112, 213, 311, 115, 
219 and 317. Put one t(cp2L) into its standard position 
at the vertex 1.2.3. 

3. Generation t(¢4L), Fig. 11: the composition of 
t(~oaL) can be extended along the direction 10.11.12. 
Cover faces 10, 11, 12 with three s(L). Insert nine a(L) 
in standard positions at the edges 1019, 1015, 1115, 
1117, 1217, 1219 and 10111, 11112, 12110. Adjoin four 

Fig. 9. Composite cell a(tp 3 L). The composite cell l(tp 2 L) is covered 
by four s(L) and ten a(L) to yield the cell shown in the middle 
part of Fig. 10. The pieces to the right and left of/(¢2L) are of 
outer shape a(~L). 

Fig. 10. Composite cell a(¢3L). Insertion of two t(cp2L) along the 
C 3 axis into the tetrahedral holes of the cell constructed 
according to Fig. 9 yields a(~03 L). 

..."" 

Fig. 11. Composite cells t(~03 L) and t(~ 4 L). Lower left part: partial 
coveting of l(~2L) to the left as in Fig. 9 yields a tetrahedral hole, 
insertion of t(~2L) along the C 3 axis gives t(tpaL). Upper right 
part: A combination of three s(L) and nine a(L), moved along 
the C 3 axis, covers the smaller faces of t(~oaL) up to four 
tetrahedral holes as in i_(~2 L). Four t(~o2L) are moved along C 3 
axes into these holes. A ring of three l(tp 2 L) with three inserted 
a(~L) is moved along the C a axis of t(tp 3 L) to complete t(~o 4 L). 

t(tp2L) in standard positions at the vertices 5.10.11, 
7.1 1.12, 9 .12.10 and 10.11.12. At the icosahedral 
edges 10-11, 1 1-12, 12-10, attach three l(~o2L) and 
join them in pairs by three a(~oL). This completes the 
composition of t(cp4L) as a composite subcell of 
d(¢ a L). An alternative procedure would be to extend 
the composition of t((0aL) to the next generation of 
elementary cells. 

4. Generation t(~05L): the composition of t(q~4L) 
described above is repeated with the elementary cells 
d(~0L), s(~0L), a(~oL) and the composite cells l(~03L), 
a(~02L). As noted before, a(~o2L) does not exhibit the 
full symmetry of a(L). In the present composition, the 
position of a(~02L) requires only the mirror plane 
through the largest edge of a(cpEL) as part of the 
symmetry group ~3v of t(tp 5L). This mirror plane is 
maintained in the composition of  al(tp 2 L).  

The main result of this section may be summarized 
as follows. 

4.11. Proposition: the seven composite cells yi(tp qi+3 L) 
can be composed out of  the seven elementary cells 
y t(~ 'L)  

The composite cells have the same central symmetry 
groups as the elementary ones. 

Proof. The composite cells referred to are given by 
d(tp3L), s(~3L), a(cpaL), t(¢SL), d(tp4L), s(tp4L), 
a(¢4L). All of these composite cells are constructed 
with the full symmetry groups of their elementary 
ancestors. 

Some metrical properties of plane figures and cells 
are listed in Table 2. In Table 3, the number of 
elementary cells contained in a composite cell is listed. 
This table allows one in principle to compute the 
number of elementary cells of each type which arise in 
the stepwise filling of central regions of E 3. 

5. Space filling with seven elementary cells and central 
icosahedral symmetry 

The steps taken so far allow one to prove the key result 
of this paper given in § 5.1. 

5.1. Proposition: the seven elementary cells d(L), s(L), 
a(L), t(tp 2/), d(tpL), s(~oL), a(~oL) allow one to cover any 
central part of  E a while maintaining the full icosa- 
hedral symmetry 

They therefore allow for space filling with this 
symmetry. 

Proof. The proof is given by induction with respect 
to periods of three generations of composition. Clearly 
d(L) is elementary and covers a central region of E 3 
with icosahedral symmetry. Suppose that a dodeca- 
hedral central region d(~p3mL) of E 3 has been covered 
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by the repetition of the seven elementary cells, and that 
at the same time the other cells s((o3mL), a(~o3mL), 
t((o3m+EL), d((oam+lL), s((oam+lL), a((oam+lL) have 
been constructed from the elementary cells. This set of 
composite cells may be denoted as yl((o3m+°'L) accord- 
ing to definition 4.5. Define now L' = (o3mL. It was 
shown in proposition 4.11 that the generation 
yt(tpq,+aL ') of seven composite cells can be composed 
out of the seven elementary cells yt((oq, L'). The proof 

Table 2. Metrical properties of  figures in E 2 and 
cells in U_ a 

Pentagon p( L ) 
Edge length L 
Distance center-vertex L0/(02 + 1) ~/2 
Distance center-midpoint edge L02/[2(02 + 1)t/21 
Surface L 2 502/[4(02 + 1)1/21 

Dodecahedron d(L) 
Edge length L 
Distance center-vertex L V/3~0/2 
Distance center-midpoint edge L02/2 
Distance center-midpoint face L 03/[ 2(02 + 1)t/2 ] 
Volume L 3 505/[2(02 + 1)1 

Icosahedron i(L) 
Edge length L 
Distance center-vertex L [ ( ~  + 1)1/2/2] 
Distance center-midpoint edge L0/2 
Distance center-midpoint face L~02/(2V/3) 
Volume L 3 502/6 

S kene s( L ) 
Edge length L, 0L 
Height L02/(02 4- 1) 1/2 
Volume L 3 504/[ 12(02 4- 1)] 

A etos a(L) 
Edge length L, 0 L, ~02L 
Volume L 3 03/12 

Tristomos t(02L ) 
Edge length o L , ~  2 L, 03 L 
Added height L V'302 
Volume L 3 06/4 

Table 3. The number of  elementary cells in the con- 
struction of  composite cells 

Elementary 

Composite d(L) s(L) a(L) 
l 1(02 L) 1 4 1 

l(03 L) 

d d(o  3L) 31 132 60 20 
d(o 4 L) 32 252 360 80 

s s(o 2 L) 1 6 5 
s(o 3 L) 
s(& L) 10 51 35 5 

a al(02 L) 1 3 1 
a2(02 L) 
a(o 3 L) 1 8 11 2 
a(o 4 L) 2 12 12 2 

t t(O a L) 1 6 6 1 
t(O 4 L) 4 21 18 5 
t(~o 5 L) 8 48 51 12 

t(02L) d(oL) s(oL) a(oL) 

1 4 1 

12 60 
31 132 60 

1 6 5 
1 12 20 

1 2 

1 8 11 

3 
3 15 15 

applies regardless of the elementarity of the latter cells. 
Hence it follows from proposition 4.11 that the 
composite cells yt(~0 3m+q,+a L) can be constructed from 
the cells yl(~o3r"+q'L). This completes the proof of 
proposition 5.1 by induction. The conservation of 
central icosahedral symmetry is again assured by the 
application of proposition 4.11. 

6.  N o t e s  a n d  s u p p l e m e n t a r y  resul ts  

A few remarks and comments are added here to 
stimulate further research on the subject. 

6.1. The elementary cells 

There is a good deal of arbitrariness in the choice of 
elementary cells. The present selection is characterized 
by having only four shapes but admitting two different 
generations. It is believed that other (and perhaps 
fewer) elementary cells may be constructed from the 
present ones. Physicists have got used to the experience 
that seemingly elementary particles turn out to be 
composite. 

6.2. Irregular space filling 

The present paper concentrates on space filling with 
full icosahedral symmetry. Once the symmetry require- 
ment is relaxed, many other ways of space filling may 
be derived from the present one. The generations of 
elementary cells provide examples of space filling with 
subgroups C~sv, c~3v and c~2~ of the icosahedral group. 
Besides, the number of elementary cells may be 
reduced. For example, the cell a(~oL) may then be 
constructed from two a(L) and one s(L). 

6.3. The dodecahedron 

The question arises if the dodecahedron should be an 
elementary cell or, alternatively, should be built from 
other elementary cells. It is indeed possible to construct 
a dodecahedron from the elementary cells t and s, 
without using another dodecahedron. 

6.4. Proposition: composition of  the dodecahedron d 
from t and s, Fig. 12 

Mark the midpoints of the edges of d(2L). The 
inscribed pentagon on each face of d(2L) has the edge 
length ½~0 x 2L = ~0L. The distance from a midpoint of 
an edge to the center of d(2L) is tp2L. Hence, the 
pyramids with the inscribed pentagon p(~oL) as base 
and the center of d(2L) as top vertex are of the type 
s((oL). The midpoints of three edges of d(2L) with a 
common vertex have, relative to each other, the 
distance (0L. The three-pyramid with the base triangle 
spanned by these three midpoints and the vertex at the 
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center of d(2L) is part of t(tpL). The three-pyramid 
formed by the same three points and the corre- 
sponding vertex of d(2L) forms the second part of 

Fig. 12. Composition of the dodecahedron from skene and 
tristomos. When the midpoints of the edges of d(2L) are con- 
nected with the center, these lines and the edge lines of the 
dodecahedron yield a decomposition of d(2L) into 20 t(~ol) with 
axes along the C 3 axes of d(2L), and 12 s(~ol) with axes along the 
C 5 axes of d(2L). This composite cell falls outside the genera- 
tions defined in § 4 but yields an alternative form of space filling. 

t(~oL). Hence d(2L) is composed of 20 t(q)L) and 12 
s((oL). 

This dodecahedron, because of the scaling factor 2, 
belongs to a new branch of possible generations. It 
was shown in proposition 5.1 that the cells s and t can 
be extended in periods of three generations. It follows 
that the composition according to proposition 6.4 can 
be used to yield an alternative way of space filling with 
icosahedral symmetry, based on the same set of 
elementary cells. 

The author is indebted to the referee of the first 
version of this paper for pointing out some mistakes in 
relation to the icosahedral group, for suggestions on the 
title and introduction, and for comments on the 
references. 
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Abstract 

A comparison has been carried out between the results 
of analyses of several sets of neutron powder diffrac- 
tion data using three different methods: the Rietveld 
method [Rietveld (1967). Acta Cryst. 22, 151-152; 
(1969) J. Appl. Cryst. 2, 65-71], a modification of the 
Rietveld method to include off-diagonal terms in the 
weight matrix [Clarke & Rollett (1982). Acta Cryst. 
Submitted] and the SCRAP method, which involves the 
estimation of observed Bragg intensities [Cooper, 
Rouse & Sakata (1981). Z. Kristallogr. 157, 101-117]. 
Two simulations have also been carried out to 
demonstrate the way in which the results can differ in 
more extreme cases. This study has confirmed that the 
values of the estimated standard deviations given by the 
Rietveld method are not reliable and that, of the 
methods considered, only the SCRAP method will in 
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general give reliable values for the estimated standard 
deviations of the structural parameters. 

Introduction 

An analysis of the Rietveld profile refinement method 
(Rietveld, 1967, 1969) by Sakata & Cooper (1979) 
showed how the results obtained by this method differ 
from those given by a conventional integrated intensity 
method and indicated that the values given for the 
e.s.d.'s (estimated standard deviations) of the refined 
parameters are unreliable. New methods for the 
refinement of powder diffraction data have subse- 
quently been developed which will give more reliable 
values using two quite different approaches to the 
problem. 
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